TS2uRF: A New Method for Sharpening Thermal Infrared Satellite Imagery
نویسندگان
چکیده
Thermal infrared (TIR) imagery is normally acquired at coarser pixel resolution than that of shortwave sensors on the same satellite platform. TIR resolution is often not suitable for monitoring crop conditions of fragmented farming lands, e.g., the accurate estimates of evapotranspiration (ET) based on surface energy balance from remote sensing for irrigation water management. Consequently, thermal sharpening techniques have been developed to sharpen TIR imagery to a shortwave band pixel resolution. However, most methods concentrate on the visual effects of the thermal sharpened images, and they treat the pixels as independent samples without considering their spatial context, which can give rise to adverse effects such as artifacts. In this work, a new thermal sharpening method called TS2uRF is proposed. The potential of superpixels (SP) combined with regression random forest (RRF) have been used to augment the spatial resolution of the Landsat 8 TIR (100 m) imagery to their visible (VIS) spatial resolution (30 m). The SP has allowed the contextual information on the land cover to be integrated, and RRF has allowed the relationship between five spectral indices and TIR data to be integrated into a single model. The TIR sharpened images obtained using the TS2uRF were compared with images obtained using the TsHARP, one of the most classic thermal sharpening techniques, evaluating the root-mean-square error (RMSE) and structural similarity index (SSIM) for measuring image quality. In all of the cases evaluated, the RMSE and SSIM of the images sharpened using the TS2uRF method outperform those obtained using TsHARP. In particular, the TS2uRF method has an average error of 1.14 ◦C (RMSE) lower than TsHARP, regarding SSIM, TS2uRF outperforms TsHARP on average by 0.218. From the visual comparison, it has been shown that the TS2uRF methodology avoids the artifacts that appear in the enhanced images using the TsHARP method.
منابع مشابه
Avegetation index based technique for spatial sharpening of thermal imagery
High spatial resolution (∼100 m) thermal infrared band imagery has utility in a variety of applications in environmental monitoring. However, currently such data have limited availability and only at low temporal resolution, while coarser resolution thermal data (∼1000 m) are routinely available, but not as useful for identifying environmental features for many landscapes. An algorithm for shar...
متن کاملA Data Mining Approach for Sharpening Thermal Satellite Imagery over Land
Thermal infrared (TIR) imagery is normally acquired at coarser pixel resolution than that of shortwave sensors on the same satellite platform and often the TIR resolution is not suitable for monitoring crop conditions of individual fields or the impacts of land cover changes that are at significantly finer spatial scales. Consequently, thermal sharpening techniques have been developed to sharpe...
متن کاملComparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods
Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...
متن کاملUtility of thermal sharpening over Texas high plains irrigated agricultural fields
[1] Irrigated crop production in the Texas high plains (THP) is dependent on water extracted from the Ogallala Aquifer, an area suffering from sever water shortage. Water management in this area is therefore highly important. Thermal satellite imagery at high temporal ( daily) and high spatial ( 100 m) resolutions could provide important surface boundary conditions for vegetation stress and wat...
متن کاملSpatial Scale Gap Filling Using an Unmanned Aerial System: A Statistical Downscaling Method for Applications in Precision Agriculture
Applications of satellite-borne observations in precision agriculture (PA) are often limited due to the coarse spatial resolution of satellite imagery. This paper uses high-resolution airborne observations to increase the spatial resolution of satellite data for related applications in PA. A new variational downscaling scheme is presented that uses coincident aerial imagery products from "Aggie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 10 شماره
صفحات -
تاریخ انتشار 2018